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ABSTRACT

A full-wave solution has been obtained for radio wave propagation in the
presence of an elevated tropospheric layer. This analysis was performed
as part of the CNI (Communication, Navigation, Identification) experimental
program. The tropospheric layer is modeled as a trilinear refractive

index profile with a sufficient lapse rate so as to result in an elevated duct.
The analytical solutions give the received signal level for air-to-air propa-
gation paths at UHF, the corresponding signal fading level, and the space
diversity distance to insure good quality reception. The analysis performed
here can be applied to ionospheric propagation and to the underwater
acoustic channel.



ACKNOWLEDGMENT

The author is grateful to Mrs. M. T. Nowak whose expert computer
programming knowledge helped make the numerical results available in

such a short time.

iv



List of

List of

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

TABLE OF CONTENTS

Page
Illustrations vii
Tables vii
1 INTRODUCTION 1
1.1 Motivation for the Problem 1
1.2 A Discussion of the Problem 2
1.3 Outline of Approach 8
1.4 Contents of the Report 2
2 PRECISE MATHEMATICAL FORMULATION OF 14
THE PROBLEM
3 SERIES SOLUTION OF THE SPHERICAL 18
HERTZIAN WAVE EQUATION
4 THE WATSON TRANSFORMATION 22
5 THE LANGER APPROXIMATE FORMULAS 27
6 SOLUTION FOR THREE TRANSITION POINTS 30
7 MODIFICATION OF THE RADIAL DIFFERENTIAL 35
EQUATION
8 MODEL FOR THE TROPOSPHERE 39
9 EXPRESSION FOR THE ELECTRIC FIELD 44
10 NUMERICAL RESULTS 53
10.1 Description of the Computer 53
Calculations
10.2 Calculation of the Characteristic 55
Values for the Propagation Modes
10.3 Discussion of the Characteristic
Values and Their Physical Interpreta- 65
tion
10.4 Comparison of Calculated and Experi- 69
mental Results
11 SUMMARY OF CURRENT RESULTS AND RECOMMENDATIONS 76

FOR FUTURE WORK




APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

Bibliography

TABLE OF CONTENTS (Cont.)

JUSTIFICATION FOR THE HERTZ POTENTIAL

CONTOUR INTEGRAL REPRESENTATION FOR
U(r,0)

DERIVATION OF EQUATIONS (4.12) AND
(4.13)

THE MODIFIED HANKEL FUNCTIONS AND THEIR
PROPERTIES

vi

86

91

97



Figure Number

WNNRFRENERFRWNDE

=
COOW®ON M

10.

£~

10.

w

10.6

10.7

Table Number

10.1

10.2

10.3

10.4

LIST OF ILLUSTRATIONS

Elevated Duct -- N-Profile
Elevated Duct -- M~Profile
M-Profile

Problem Geometry

Layer Model

The Function y(h)

Propagation Modes (Exaggerated Dimensions)

Y (h) Profile
Characteristic Values as a Function of
Mode Number

Field Intensity as a Function of Terminal

Separation (AM = 40 in 30m)

Field Intensity as a Function of Terminal

Separation ( AM = 40 in 100m)

Field Intensity as a Function of Terminal

Separation (AM = 40 in 100m)

Field Intensity as a Function of Height

(AM = 40 in 30m)

Field Intensity as a Function of Height

(AM = 40 in 100m)

Complex S-Plane

Transformed Path of Integration
Regions of Validity of the Asymptotic
Expansion for hl(z)

Regions of Validity of the Asymptotic
Expansions of hz(z)

LIST OF TABLES

Comparison of Furry-Gamow Roots and
Exact Roots

Characteristic Values

A= 1m, AM = 40 in 30m, hi = 900m)

Characteristics Values

A= 1lm, AM = 40 in 100m, h; = 900m)
Characteristic Values
A= 2m, AM = 40 in 150m, h, = 1800m)

i
vii

7k
72
73

74

82
82
96

96

Page
62

66
67

68




SECTION 1

INTRODUCTION

iz lE Motivation for the Problem

In the course of designing a propagation experiment for the
Communication, Navigation and Identification (CNI) Program [1]*, for
air-to-air and air-to-ground communications links at UHF, it was recog-
nized that anomalous tropospheric conditions could lead to serious de-
gradation (or enhancement) in signal strength and to multipath (inter-
ference) effects similar to those produced by the earth. These facts
prompted an initial investigation into the subject of tropospheric
propagation, It was learned that tropospheric layers** in the
first few kilometers above ground are relatively common, but their
precise effect on signal strength, fading characteristics, Doppler
spectrum, available bandwidth, space diversity and relative terminal

heights has been investigated in relatively few cases.

Propagation in an anomalous atmosphere has been studied exten-
sively using the theory of geometrical optics. The theory was quite
successful in explaining the gross features of the results of air-to-
air propagation tests at UHF [2]. However, the theory is approximate
and it suffers from the drawback of all geometrical optics treatments
in that the solution breaks down at the caustics, and furthermore,
cannot predict field strengths beyond the horizon. Analytical solu-
tions or full wave solutions for elevated layer propagation have re-
ceived only a few approximate and incomplete treatments. Furry [5] has
obtained approximate solutions which are valid for the trapped or ducted

waves only, Northover [6] has treated (at VHF) the elevated layer as a dis-

* A bibliography is listed at the end of the report.

** The term layer means a stratum, of vertical thickness from a few
meters to several hundred meters, within which the mean vertical
gradient and/or the variance of refractive index are much greater
than elsewhere (see Section 1.2).
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continuity of the index of refraction, which is an unrealistic model
in the general case, and Chang [5] considered (at VHF) only the trapped

waves, essentially ignoring the effects of the earth.

As a result of this initial investigation, it was seen that the
present insufficient and incomplete knowledge of wave propagation at
UHF in the presence of elevated layers could not lead to the effective
planning of a propagation experiment. Moreover, only more precise
analytical results along with a more realistic model of the layer would
lead to a better interpretation of the final test data from such an

experiment. It is with this objective in mind, that the present work

was undertaken.

1.2 A Discussion of the Problem

We will give in this section an outline of the problem and the
results we hope to obtain. We will discuss the assumptions that we
are making, and delineate the part of the work that is original. We
will also include a description of the troposphere and the effects of

elevated layers on received signal strength.

The problem considered is that of determining the electromagnetic
field produced by a vertical magnetic dipole (transmitter) in a radially
inhomogeneous medium (troposphere) on or above a spherical earth. A
full wave solution is obtained for the case when the variation of the
index of refraction of the atmosphere is such as to produce an elevated
tropospheric duct. The solutions for the field intensity are obtained
as a function of frequency, layer height and vertical thickness, lapse
rate or change of index of refraction with height (dN/dh) within the
layer, and as function of transmitter and receiver heights and separa-
tions. In the solution of the problem the WKB or phase integral solu-
tions for a second order ordinary differential equation are used. The
work of previous authors is extended in three important ways. First, we
use the ''extended" WKB solutions of Langer [6] . This approach allows

the clesing of the "gap" in the regular WKB solutions. It involves Hankel
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functions of order one-third. Second, the Langer solutions valid only
for a single transition point are extended to be valid for three tran-
sition points. This is essential to obtain results valid in the elevated
duct and it is accomplished by obtaining solutions in three regions and
joining these at the bottom and top of the elevated layer heights. And
third, the resultant solutions for the trapped and leaky waves, are ob-
tained from the solution of a single transcendental equation. This re-

sult is, to the best of the author's knowledge, entirely original.

The refractive index profile of the troposphere is given by three
linear line segments of different slope. While at first sight this choice
might seem artificial, it has been shown by refractometer measurements that
index of refraction profiles do take on such abrupt changes and, hence,
the trilinear profile becomes a valid approximation. In reality, all that
is required for the presented solutions to apply is that the profile be
"sufficiently" linear in the three segments*. The second assumption
we are making is to replace the spherical earth by a flat earth and modify
the index of refraction, so called earth flattening approximation. In
this case the solutions are valid to within two percent up to ranges of
about half the radius of the earth, and this independent of the frequency.
On the other hand, the error in the height-gain functions increases with

hs/2 and is proportional to the frequency [7]. At a

elevation as
frequency of 300 MHz and an elevation of 5000 feet, for example, the
height-gain function is only in error by less than two percent. The
third assumption is that the earth is a perfect conductor. This

is a good approximation for horizontally polarized waves and for the low

elevation angles of interest here.

We will now turn to a discussion of the troposphere and the effects

of elevated ducts on communication links.

The sufficiency condition is given in Section 1.3.



The elevated inversion layer or elevated duct is characterized by
a rapid decrease in the index of refraction, n over a relatively short
height interval. The index of refraction n can be derived from basic
thermodynamic laws and can be shown to give

i A | L s 48%0e) 1076

T

where p is the atmospheric pressure (millibars), T is the temperature
(absolute scale) and e is the partial pressure of water vapor (milli-
bars). The refractive index of the troposphere does not to a first
order approximation depend on the frequency for wavelengths longer than
1 cm. For waves of the millimeter range considerable losses appear,
which can be considered by means of the introduction of a complex
dielectric constant of air. Then the index of refraction n will depend

on frequency. In this report we are not interested in frequencies higher
than 10 GHz.

In view of the small departure of n from unity (on the order of
10-4) it is often convenient to use the quantity N = (n - 1) 106, called
refractivity. Near the earth's surface the index depends on the climatic
and meteorological conditions and varies within 260-460 N-units. On
the average, the value of N changes linearly with height, and for the
middle latitudes the gradient of the change N with height h is

dN

= -40 N-units/km .

An elevated layer is shown qualitatively in Figure 1.1 at an altitude
between 1000 and 1100 meters.
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FIGURE 1.1 ELEVATED DUCT --
N-PROFILE

Most frequently these layers are caused by a mass of warm dry air over-
lying a cool moist air mass. The usual occurrence of this phenomenon

is at heights of approximately 1 to 2 kilometers. When the refractivity
gradient exceeds 157 N-units/km, within the layer, the layer

becomes an elevated duct. The changes in N have been measured to be as
high as 5 x lO3 N-units per km. Sometimes 20-25 N-unit changes have

been measured across a layer having a thickness of a few meters only.

Even though, the modified index or earth flattening procedure has
certain limitations as pointed out above, it offers great simplification
and a large insight into duct propagation. For this reason, we will use
the concept of the modified index of refraction to give a qualitative
description of propagation in elevated ducts. The modified index of
refraction seeks to accomplish two aims: (1) its vertical gradient
should vanish at any elevation for which the path of a ray launched

horizontally is a circular arc concentric with the surface of the earth;



and (2) it should be readily calculable from the refractivity N.
For this reason the modified index is defined by [8],

M(h) = N + 10

(s}
w =

where h is the height above the earth and a is the radius of the earth.

height A
(m)
1100 %
1000 1
330 = M-units

FIGURE 1.2 ELEVATED DUCT --
M - PROFILE



In a distribution in which M is constant rays are straight, when dM/dh
is negative rays curve downward and when dM/dh is positive, the rays
are refracted upward. The net result is that through the use of M(h)

a spherical coordinate problem is more simply analyzed in rectangular
coordinates, where plane wave modes have replaced spherical-harmonic
modes. An M-profile roughly corresponding to the N-profile of Figure
1.1 is illustrated. We will use a profile similar to Figure 1.2 in the

solution of our problem.

The disturbing effect of  tropospheric ducts on air-to-air and air-
to-ground communication links has been investigated in several important
experiments [9, 10, 11]. In general three types of disturbances
have been observed which cannot be explained in terms of ground
reflections and which are evidently associated with the tropospheric
propagation medium. These disturbances are (i) intervals of range in
which average signal has decreased 15 or 20 dB (radio-holes), (ii)
intervals of range in which the average signal exceeds the free-space
value by 10 or 12 dB (anti-holes) and (iii) intervals in range in
which interference type of lobes (multipath) of large amplitude (10-

20 dB) appear. It has been observed that radio holes and anti-holes
occurring far from within to far beyond the standard horizon are very
common air-to-air. For instance, all of the 50 air-to-air propaga-
tion flights made by Wright Air Development Center in 1951-1953 en-
countered radio holes; these flights were made under fair weather
during May-October in a three year period in Ohio [9]. Radio holes

far within the standard horizon are not so common ground-to-air.




1.3 Outline of Approach

The procedure is to reduce the problem of determining the electric
field strength of a dipole anywhere in space to the solution of an in-
homogeneous Hertzian potential wave equation with radial and angular
coordinate dependence. The solution is subject to the boundary condition
at the earth, the Sommerfeld radiation condition, the continuity of the
solution plus its derivative at all non-singular points and the condition
that the solution must remain finite at the dipole source. By separation
of variables the Hertzian potential is represented as an infinite sum of
radial and angular dependent functions. The angular functions are
Legendre functions and the radial functions are as yet unspecified. The
coefficients of the summation can be obtained from the boundary conditions.
The resulting series is, however, a very slowly converging series. To
improve the rate of convergence of this series the Watson transformation
is applied. The individual terms of this resulting series are evaluated
at the roots for which the Wronskian vanishes. This will give a general

solution.

The refractive index profile is then chosen as to give three trans-
ition points; this corresponds to an elevated duct. The radial dependent
functions mentioned above are evaluated by an approximate solution to the
radial wave equation with the "extended WKB'" method due to Langer [6],
at each transition point and in three separate regions. The solutions
are Bessel functions. The solutions in the three regions are then joined
by the continuity conditions. The fact is then emphasized that the
propagation problem reduces to the solution of an eigenvalue problem for
an ordinary differential equation. Hence, the solution has to satisfy
the boundary condition at the surface of the earth and the radiation
condition at infinity. The resulting set of complex eigenvalues and the
associated eigen—-functions represent a complete set of solutions to the
problem. Substituting this set of eigenvalues and eigen-functions in
the general series solution, we can determine the field strength due to

the radiating dipole at any point in space.
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In the solution of this problem it will be seen that an eigen-

value ordinary differential of the form occurs:

2

d un 2
7 + ko [y(h) + An] g, = 0 (1.1)

dh

where An and u_ are the eigenvalues and eigenfunctions, respectively,

k = 27/X, and y(h) is related to the modified index of refraction by
y(h) = 2 x 10--6 M(h) - MO). The functions u must satisfy the boun-
dary condition at the earth and the radiation condition at infinity.
The form of the solution to this differential equation will depend upon
the term in brackets and in particular upon the eigenvalues An which
are in general complex. When the An have imaginary parts (positive)
which are comparable inmgnitude to their real parts, the corresponding
wave is said to be "leaky'". This is because the value of the function
un(h) is found to increase rapidly with height. When the imaginary
part of An becomes small and the real part of An is comparable to
(—M(hc)) (see Figure 1.1), we have ''transitional' waves. And when

the imaginary part of An x —M(hb), the waves are ''trapped', because the
functions un(h) has its largest value between ha and hc. We will use
the "extended" WKB (Wentzel, Kramers, Brillouin) solutions of equation

(1.1) in the three cases of leaky, transitional, and trapped waves.

In general, the term [y(h) + An] vanishes at three points which,

h., shown

though complex, are extremely close to the real values hl’ h2, 3

in Figure 1.1.

Such points are called turning points or transition points. This
description has its origin in quantum mechanics where an equation very
similar to equ. (1.1), namely Schrodinger's equation, has been the sub-
ject of considerable analysis. The solutions of this equation make a

transition from, say oscillatory to exponential at the transition point.

The Jeffreys, Wentzel, Kramers, Brillouin (JWKB) or WKB method is

a procedure for finding approximate solutions to a second order differ-

9




FIGURE 1.3 M-PROFILE

ential equation of the form

u" + f(z)u =0 (1.2)

in some region, R, in which f(z) is analytic and contains no zeros,
and in which f£(z) varies sufficiently slowly. This means that the
first two derivatives of f have to be sufficiently small throughout
the region in question, with f # O therein [4]. The WKB solution of
(1.2) is given by

1
u= f 4 (AeiF(z) + Be_iF(z)) (1.3)
where
= 1
F(z) = £° (@) dg 1.4)

Z
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*
and A and B are arbitrary constants. However, the WKB approximation

always fails sufficiently near a zero of f(z). A form of the solution

of (1.2) which is valid up to the zero of f(z) itself was given by

R. E. Langer [6]. This solution has the form
1
F 2 (1) (2)
u = (FT) A H1/3 (F) + B H1/3 (F) (115)

where F = F(z) is as defined above and A and B are arbitrary constants,
and the Hl/3 are Hankel functions of the first and second kind. This

approximation satisfies the equation

2 2 "
u” &+ <§2 - %E 35 + %- ﬁ%— - %—-%—) u = 0 (1.6)
i
where Q = f2. Hence, if we can show that
ggﬁ_g_g?;_lgi«QZ @9
4 Q2 36 F2 2 Q i

the solution in (1.5) is a very good approximation of the original

differential equation (1.2).

A limitation of the Langer WKB solution extension is that the
method applies only to a single transition point. Hence, in our
approach to the problem we shall obtain "extended" WKB solutions of
the differential equation in a region including only one transition
point. These solutions are then "joined" at the border of each region
by employing the continuity of the functions and their derivatives,
so that the general solution is valid in the semi-infinite interval

extending from the surface of the earth to infinity.

*
Northover [5 ], p. 37ff, shows that for the WKB solution to hold
we must have |f'/£3/2| << 1 and £"/fl1/2 << 1.

11



1.4 Contents of the Report

We will give here a brief outline of the remainder of this report.
In Section 2, we formulate the problem in a precise mathematical way.
The three dimensional vector solutions of Maxwell's equations are re-
duced to a one dimensional vector by the introduction of the Hertz
potential. By placing the transmitting source on the polar axis, ad-
vantage is taken of the symmetry of the problem. As a result, the
ﬁertz potential has only an r and 6 dependence. The electric and
magnetic fields can then be written in terms of this Hertz potential.
In Section 3, we obtain the slowly converging series solutions for the
Hertz potential. By separation of variables this series can be written
as the product of the radial dependent, r and angular dependent, 6
functions. The angular functions are Legendre polynomials, and the
radial functions are as yet unspecified; since they depend on the
particular index of refraction profile assumed. In Section 4, we apply
the Watson transformation to obtain a more rapidly converging solution.
This is done by expressing the series solution for the potential as a
contour integral in the complex plane enclosing an infinite number of
singularities, By Cauchy's residue theorem, the more rapidly converging
series for the potential is now a sum over the residues enclosed by
the contour. In Section 5, we use Langer's '"extended" WKB solutions
to obtain approximate solutions of the radial dependent functions. And
in Section 6, we obtain the radial dependent solutions for three trans-
ition points. In Section 7, we transform these radially dependent sol-
utions from that of a spherical geometry into a ''flat earth' geometry.
In Section 8, we present a model for the layered troposphere. And in
Section 9, we obtain the expression for the Hertz potential and the
electric field. 1In Section 10 we give the numerical results for the
potential. The discussion in this section includes details of the numerical
evaluations. Section 11 contains a summary. Relegated to the Appendices
are the mathematical details of the contour integral representation and

the modified Hankel functions. Also included there is the justification

12



for representing the three dimensional vector solutions of Maxwell's

equations by the one dimensional Hertz potential.
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SECTION 2

*
PRECISE MATHEMATICAL FORMULATION OF THE PROBLEM

We assume the earth to be a sphere of radius a, and introduce spher-
ical polar coordinates r, 6,¢ as defined in Figure 2.1. We are given
a vertical magnetic dipole of moment m/ with a harmonic time var-
iation eimt at a point D(b, 0, 0) and we are required to determine
the electromagnetic field at an arbitrary point P(r, 6, ¢) on or above
the surface of the earth and at a distance R = (r2 + b2 - 2br cos 6)1/2
from D. We assume the earth to be immersed in an inhomogeneous medium
whose dielectric constant k is a function of radial distance r only,
k = k(r); all effects of the ionosphere have been neglected**. Inside
the earth k(r) is assumed to be a constant, k2 In any medium the
propagation constant is ik = [iwp (0 + iwe)]l/2 so that in air k = 2n/A,
while in the earth k, = k (K - 60 ioA)l/ , where K is the relative
dielectic constant, ¢ is the conductivity (in mhos per meter) and the
permeability p is assumed to be the same inside and outside the earth.

In this problem kz(r) = mz pe(r) for the troposphere.

The electromagnetic field must satisfy Maxwell's equations, both in-
side and outside the earth, it must possess at the point D a singularity
corresponding to that of the dipole, the electric field and magnetic
field must be continuous everywhere, while at infinity the field vectors

must satisfy the Sommerfeld radiation condition.

Let E and H represent the electric and magnetic field vectors,
respectively; the factor exp (iwt) being understood throughout. Then

Maxwell's equations in m.k.s units, become the following:

*
The material in this and the following sections is part of the author's

dissertation for the Ph.D. at the University of Pennsylvania,
Philadelphia.

*% It has been shown experimentally that at frequencies higher than
30 MHz the ionosphere has negligible effects on terrestrial wave
propagation.
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VxE

-iwpH Ve :H=0
a0

Vx H= iweE V « eE = 0.

It has been shown by Friedman [12] that in spherical coordinates the
electromagnetic field given by (2.1) can be obtained from a Hertz

vector T which has only its radial component non-zero, even when the
dielectric constant is a function of r. Since the dipole is located
on the polar axis, symmetry exists, and the vector T will not depend
on ¢ but only on the coordinates r,8. We define T = (rU(r,0),0,0).

In terms of U the electric and magnetic fields are:

U
Er—O, EO_O’ H¢—0 E¢ = —iwy 35
(2.2)
1 22z 2 32
Hy = = T T3rse Ho = -(k +?) (xU).

Equations (2.2) represent the field of a magnetic dipole and are sat-
isfied for

-ikR
U=n2 (2.3)
4TR
where M is proportional to the magnetic moment of the dipole, its
value being
IS
M——g—- (2.4)

where I is the electric current in the loop of area S and b is the

distance from the center of the earth to the dipole.
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The scalar wave function U(r,6) must satisfy several conditions.

First U(r,6) must satisfy the partial differential equation

L VZU + sz =0 (2.5)

in the exterior region r > a, except at the dipole, and in the interior

region r < a. Second,
3 U and & (xU) (§2..65)
or :

must be continuous everywhere except at the source. Thirdly, as R -+ 0

-ik (b)R
FIT: o 4388 e 3.7y

4TR
This means that in the neighborhood of the dipole the potential U be-
comes that of an oscillating dipole in an homogeneous medium whose
permittivity is equal to the local value at the dipole position.

Finally, U must satisfy the Sommerfeld radiation condition given by

. 105 i (%+ ik U) =0 . (2.8)

) e

The fact that U(r,9) possesses a singularity at the dipole, r = b,
8 = 0, while otherwise it satisfies the wave equation (2.5), can be

expressed very concisely using the Dirac S§—-function. We write

v + kly = -y Sb)ECO) (2.9)

2nr2 sin 6

20 o ; i
where M is the source strength and the factor 2nr  sin 6 is designed

to normalize the solution.

17



SECTION 3

SERIES SOLUTION OF THE SPHERICAL HERTZIAN WAVE EQUATION

We shall now obtain a general solution to the inhomogeneous
Hertzian potential wave equation given by (2.9), subject to the re-
quired boundary conditions discussed in the previous section. Rather
than writing the total field as the sum of a primary field due to
the dipole source and a scattered field due to the earth, we shall use
a self-consistent method. In particular, we will show that the solu-
tion to the inhomogeneous wave equation (2.9) has the form of an ex-

pansion in zonal harmonics,

U(r,0) =Z &) u () P_ (cos ©) (3.1)
n=0

where n are integer values and un(r) are solutions to the equation

) 1y n(n+l) -M
D [k W == ] (ru) = 3708 (x-b), (B2
or
d2un 2 dun 2 n(n+l) =M
=2 TE aET [k (r) "rz_] %" i O GE) e G

To show this we use the orthogonality property of the Legendre poly-

nomials Pn(cos 8) in (3.1) and find that
o

un(r) = U(r,9) Pn (cos 8) sin 6 d6 . (3.4)

0
If we multiply equation (2.9) (for spherical coordinate system) by

Pn(cos 8) sin 6 d9 and integrate between 0 and w, this equation transforms

into the ordinary differential equation (3.2).
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The foregoing implies that for U(r,8) given by (3.1) to be a
solution of the inhomogeneous wave equation (2.9), the coefficients
un(r) must satisfy eq. (3.2). Furthermore, since the Legendre poly-
nomials form a complete set, U(r,8) as given by (3.1) is uniquely
specified. Hence, U(r,6) given by eq. (3.1) is the total solution

of the inhomogeneous wave equation.

The boundary conditions that had been imposed on U in Section 2

must now be satisfied by (run), namely

d .
118 (run) and i (run) must be continuous

25 u_ must be regular at r = 0

3. The Sommerfeld radiation condition
lim |Q_ (ru ) - ik (ru )| =0
dr n o n
YT

must be satisfied.

In order to solve equation (3.2) we must know the solutions of

the homogeneous differential equation

2
d—2 (ru ) + [kz(r) = m;’—ll] (ru) =0 . (3.5)
dr r

When kz(r) = koz, a constant (case of airless atmosphere), the solutions
of (3.5) are linear combinations of the Hankel functions of half-integer
(1) (2)

nt1/2(0) and Hg .
solutions of (3.5) behave like Bessel functions, but their exact behavior

order, namely H (xd). If k2(r) is not a constant, the

will depend on the variation of k(r) with r.

3.1 General Solution for the Radial Functions

We let
un(r) = anVn(r) foE <
un(r) = ann(r) o2 ¥ = b
19



where the Vn(r) and Qn(r) are independent solutions of the homogeneous
differential equation in (3.5). They, furthermore, satisfy the re-
quired boundary condition in their respective domains. The general

solution (3.1) is then given by

© a Vn(r) r < b

U(r,0) = Z ) P (cos ©) (3.6)

n=0
bn Qn(r) 2o bl s

The coefficients a and bn may be determined by applying the required
boundary condition at r = b. At r = b, the functions (run) are con-
tinuous and their derivatives have a junp of magnitude -M/2m b. From
the definition of Vn(r) and Qn(r) above, the functions un(r) are re-—

gular at r = 0 and satisfies the radiation condition. Then we can

prove that
-M
a8 T 2mw_ Qn(b) (.2
n
M
bn = 2nwn Vn(b) (3.8)

where wn is the Wronskian of (rQn) and (rVn) evaluated at r = b. Sub-
stituting (3.7) and (3.8) in (3.6), we obtain

s Q (&) V_(r) r<b
U(r,0) = -;% ZSZS“L—DPH (cos 8)
=0 ‘m Q (x) V_(®) r>b.

This is the solution to our problem in its most general form for an
arbitrary variation of the index of refraction of the atmosphere.
Equation (3.9) represents Greens' function for the inhomogeneous wave
equation (2.9). The general requirement of the reciprocity of Greens'

function is satisfied owing to the fact that eq. (3.9) is symmetric in
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r and b. The reciprocity with respect to angles 6 and 60 (we con-
sidered the case in which the latter is zero) can be expressed by re-
placing cos 8 by cos (8 - 60) which is symmetric in 6 and 60. It has
been shown that the solution (3.9) can be used for numerical computa-
tion only if ka is small compared to unity. For example, at 100 MHz
about a million terms are required to evaluate the series. In the
following sections the solution (3.9) will be transformed so that it

can be readily computed for large values of ka.
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SECTION 4

THE WATSON TRANSFORMATION

The series expression for U(r,6) is very slowly converging. For
example, for ka of the order of 106, where k = 21/) and a is the radius of the
earth, approximately 106 terms of the series are required to evaluate
the value of U(r,8) at one point. Such numerical calculations are
even prohibitive in this age of high speed computers. A way around
this laborious task was found by Watson [13]. Watson showed that the
series (3.9) can be expressed as a contour integral in the complex plane
enclosing an infinite number of singularities. By Cauchy's residue
theorem this integral is then equal to the sum of the residues enclosed
by the contour. The net effect of the Watson transformation is to have
a much faster converging series. The difficulty that is left, is to
locate the singularities, namely zeros of the Wronskian (see Appendix B).

From eq. (B.12) we have the series representation

1
M v + 7 Pv(cos (m - 8)) Qv(b) Vv(r) r<b
Ui, 6. = 2 Z sin v dw

G Q) v e b

ds —
(4.1)

where v represents the zeros of the Wronskian Ws and the derivative

(d/ds) is with respect to the complex variable s.

The residue

v + %- Pv(cos (m - 8))

sin vm '
W
v

Q,®) V () (4.2)
where
W = — W (4.3)
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can be interpreted in another way. Since the Wronskian W, = 0y Khe

two functions Qv(r) and Vv(r) are linearly dependent, that is Vv(r) =

a Qv(r). This means that the function Qv(r), besides satisfying the
Sommerfeld radiation condition, also satisfies the condition of regu-
larity at r = 0. It follows that v is an eigenvalue and Q,(r) is an eigen-

function of the following problem:

Find the values of v for which V(r), the solution of the differ-

ential equation:

2

§_£§Yl.+ [kz(r) _ E_LX;i_ll] G = (. 4
2

dr r

is regular at r = 0 and satisfies the radiation condition at infinity,

that is

lin |$ (V) - ik (V)| = 0 . (4.5)

E>®

It will be seen in later sections that the zeros of the Wronskian,
v, will be very large, of the order of magnitude of ka. This allows us
to use asymptotic formulas for the Legendre functions Pv(cos (r - 8)).
We have

1/2
2 1 n
e ey e ihem g (4.6)

Pv(cos 8) ~ (

for large v, so that

Pv(—cos 8) ) Pv(cos (m - 8))

sin vm - sin 7mv
. 1/2
2i ) 1
~- G F D sine exp -1 (v+3)el. (4.7)
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Next, using the fact that the dielectric constant of the earth
is constant, it has been shown [12] that the boundary condition at

the surface of the earth can be written as

[ﬁ (rVS) -T (rVS)] =0 (4.8)
r=a
1/2

2 2
T = i(k2 = ko )

where k2 and ko are the wave-numbers of the earth and free space, res-
pectively. A perfectly conducting earth implies k, = © and hence

2
(4.8) reduces to

(rVS) =0. (4.10)

r=a

Equation (4.8) can also be written in a preferred form:

3

2 (v )>

or s

S = R (4.11)
< (rVS)

r=a
We shall use this result presently.

It is shown in Appendix C, that with the aid of equations (4.10)
and (4.11), the expression (4.1) can be written for an inhomogeneous

earth and a perfectly conducting earth, respectively, as

S (2v+1) Q, () Q () P (cos (m - 6)) i
4a2 S B Qv(a) Qv(a) [a %; (rQ,)
e
t er -
t=y
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Uik, ) = o vy BB (EQ (X)) P (cos (v - 6))

4br i
4br =4 sin v [%; (rqvﬂ [%E (er)]
r=a
t=v
(4.13)
Using the approximation (4.7), we obtain
B 1472
U(r,8) = ;%Z[%)e_i] exp [i(v + %) 8]
(4.14)
Qv(b) Qv(r) . 1
Q@ Q @ [Bg_r (er)]
at er —
and =
1/2
U(r,8) = —Mz:%l exp [1(v + %) 6]
v
Q (b) Q (r)
v v (4.15)

d )
[E (rQ\))]r [B_t (er)]

=a

Equation (4.14) and (4.15) are the expressions for the Hertz potential

satisfying the boundary condition (4.11) and (4.10), respectively.

The formulation in (4.14) (also (4.15)) has the advantage that

the same formula for U(r,8) represents r > b and r < b, in contrast
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to eq. (4.1). The expression, however, breaks down for 6 = 0 since

for small 6,

PV(—cos 8) -~ El%.!l log 62

whereas the function Pv represents is to be regular for 6 = 0 and

r # b, It implies that the whole '"ray" 6 = 0 must be considered a
singularity of the representation in (4.14) and (4.15). This condition,
however, presents no problem in this investigation, since we will

always be interested in fields well removed from the 6 = O line.
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SECTION 5

THE LANGER APPROXIMATE FORMULAS

In Section 4 it was shown that the problem of determining the
Hertz vector U(r,6) and then the electromagnetic field depends upon
the solution of the eigenvalue problem for the differential equation
(4.4). 1In this section we will discuss the "extended" WKB approxi-
mations due to Langer to obtain solutions of this differential equa-
tion. The extended form is valid in the neighborhood of the transition

point as well as at the transition point itself.

Langer has demonstrated that the solutions of the so called re-
lated second order ordinary differential equation for a single trans-

ition point, i.e., a zero of [¢2(z) - w(z)] in eq. (5.1),
g(z) + [67(2) - w(@)] glz) = 0 (5.1)

is given by

g@) = Yz c1/3 H{ig (g) j=1,2 (5.2
in which the symbols H{;% stand for the Hankel functions of order
1/3, of the jth kind, and
() = 8@y 472 (5.3)
z
t(z) =J ¢(2) dz E5db
=]
~ \yll(z)
w(z) = —EYZY— (5.5)

where z, is a zero of [¢2(z) - w(z)].
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Although the formula for ¥(z) seems to assign a singularity to this
function at 2y, it is found that this singularity is removable, and
the ¥(z1) is then different from zero. The function w(z) is thus

bounded in a region about zy.

If it can be shown that w(z) is very small compared to ¢2(z)
over the considered region of z, then (5.2) may be considered as a

solution of eq. (5.1) to practical accuracy. In that case

g(r) = rQ (r) » (5.6)

and

) - _ v(v+l)
62 () = k_ [k () ;‘E‘;E] : 5.7

(o}

In the region of the zero, if

lo? @] << 1, (5.8)
then the condition

Iw(z)l << 1 (5.9)
must be satisfied for (5.6) to be an approximate solution to the

wave equation. If these conditions are satisfied in the interval of

interest, for which there is only a single transition point at r = r

1’
then the general solution is given by
1/2Z
- (E(x) (1) (2)

£q = <W)-> [Av Hy73 (z) + B, H)3 (c)] (5.10)

where
T
r = ¢ dr (5.11)
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and ¢(r) is given by (5.7).
mate solution in the region that includes one transition point.

the regions of the second and third transition point, solutions of a

Thus eq. (5.10) represents the approxi-

For

similar form apply, each valid only in a region including one transi-

tion point.

It has been shown that if ¢2 is linearly varying, w(zl) = 0 and

hence eq. (5.9) is satisfied as well as the condition |w(z)| << ¢2(z)

fer .aldl 2.

Furthermore, Langer has shown that for large I the asymptotic

forms of the Hankel

where C1

H

(2)
T

(1)
173

and C

these functions.

obtain

It may be

2
This form of the solution, however, breaks down at a zero of ¢ .

: Sty o 2
For the discussion of conditions on the permittivity when ¢

is not varying linearly the reader is referred to Doviak and

rQ

v

C

) =

(B =

functions may be used.

Hence

are constants that depend on the normalization of

€3

If (5.12) and (5.13) are substituted in (5.10), we

3

r

eid/r ¢ dr
ry

)
¢1/

+

Goldhirsh '[14] and Bremmer [15].
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1

e-i/ﬂ ¢ dr
...

¢1/2

recognized that (5.14) are the "ordinary WKB'" solutions.

(5.

o125

1.3)
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SECTION 6

SOLUTIONS FOR THREE TRANSITION POINTS

As we have mentioned in the previous section the extended WKB
solutions are valid in a region including only one transition point.
It was pointed out in the Introduction that for the problem of the
elevated duct, three transition points exist. Hence we must obtain
three separate solutions for each of the three regions. These solu-
tions are then matched at points between the transition points using

the continuity boundary conditions.

We will represent the solutions (er) to the homogeneous wave
equation in regions I, II and III by (er)l’ (er)2 and (er)3, res-
pectively. Region I extends from r = a tor = Ny region II for

ng2rsn,, and region III from r = to infinity. Since (rQ )3

)

must satisfy the Sommerfeld radiation condition, only solutions Hi/;
are allowed. Hence, we have in Region I:
. 1/2 . 1/2
» il ol e 8 (2) ,
in region II:
1/2 1/2
= _ < (l) "2 2) "
in region III:
r 1/2
- -3 5(2) .
(rQ\))3 = F\) (¢3) 1/3 (C ) ’ (6-3)
where
r
Cl(r) == $(r) dr
5
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}
>
—_

Lo
S’
(oW
~

cz(r) = (659

I
B3
—~
~
~
(=9
~

c3(r) 6.6)

T
(rQ ). and (er), (i = 1,2,3) (prime means differentiation with res-
v J

pect to r) must be continuous at r = n, and r The coctficients

1 =
A, B, Cv and D may be expressed only in terms of Fv' Further, 1

Y

i )
S R (1) >
M = ¢ ¢ ) Hpyg Ggn) (e
: 1/2
(2) _ ,1nl (2) :
\1n1 - 675;—) H1/3 (clnl) (6.3)
) 5
) . an (1) :
o) = (tzl y o Hy5 (Eyg) RS
: 1/2
23 “on1 s
ane) = Y w2, ) (hed)
Il ™ 1/3 ‘*2nm1
: 3P
(1) . 252 )
anz - ($—~—0 H1/3 (can) (6.11)
22
. 1/2
(2) _ o202 (2) 5
A2 T (¢2, ) H3 (Byp0) Lt
2
) 12
@) _ 30, (2) |
13“2 = (i ) Hl/3 (§3n2) (6.13%)
52
where
iy
= 6.14)
Llnl ddr (
&
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(6.15)

(6.16)

(6.17)

Using the above in equations (6.1) to (6.3) and applying continuity

conditions at ny and n, we have the set of four simultaneous equations

g B = ma l g ie)
v 1Inl

(1)' 2: 1),
4 xlnl B\)Alnl v 2n
1) (2) (2)
B Pans 0 g = B A0S
(1), (2) (2),
s ST = F 255

which gives for

A and B
v v

2nl
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(6.20)

(6.21)

(6.22)
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where

r.(2) ,(2) (2) (2) (2) (2) (29 - 1(2)
A 42y + ' ' 'y 2
"= 'l Ty Rang By * g’ S’ Ty ® By Ag o Ty B 450" I )
v D
1 J
(6.24)
where
oo .o, @ @ ,@ @, . @),
D = A A = W - ' \
[ Gl St T il el pe a0 ) Sore inzj (6.25)
and
(1) . (2) . , (1), .(2) AT
w3 + . y (D LD, (2,
S 1 S T S W YR 1 M S 15 S ST R S g
v D o
2
{6.26)
where
_ Qe 5080 . @) 5 O
L] Med “gnd © "pq  “ong (6.27)
@ L@ L@ L) .
Ly Mg Bgpor = Bog duo (6.28)
_ € . Wy D 5 (@2
Ly = Mp] Aona ™ %500 oo (6.29)
_ (2 v (0 _ oGl y o () ”
Ly & ¥y domn =851 Yo §fi 09
The functions Ll, L2, L3 and L4 depend only on the layer betwecn L

and Ny

It will be seen later that this interval g < ¢ <o, also

corresponds to the tropospheric layer.

Substituting (6.24) and (

6.26) into (6.1) gives
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1/2 /2

’ 1) 5 1 @)
(er) S K\)1 ng) “1/3 (cl) + sz (EI) 1/3 (clﬂ .

(6..31)

Substituting this in the boundary condition at the earth, we obtain

e L2 . 172

s | 1(2) g ey

r G0 M G0 kG Hp G 4
P, LU 1/2 =T (6.32)

-1 (2) _ e (1)
R ECURE R I (clJ
r=a
where
k= -K /K . (6.33)

L 2

In the case of a perfectly conducting earth I' = «», and equation
(9-32) reduces to
172 1/2

L %
1 1) e § (1) _
r=a
or

12)

(zy)
h/3 . i = (6.35)
(1) ()
Hyy3 (&

=a

If (6.22) and (6.23) are substituted into (4.14) the coefficient Fv

in no way enter the expression U(r,9).
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SECTION 7

MODIFICATION OF THE RADIAL
DIFFERENTIAL EQUATION

The next step is to obtain solutions of the homogenous differential

equation (3.5). We will write equ. (3.5) in the following form:

d2u du

n 2 n 2 _ n(nt+l) _
+ =T + [k () —_E——_] u = 0
dr T

Letting h = r-a and substituting in (7.1), we have

d2u a2k2

2k P @) - —D 3 =0
dh (h+a)

where we have written a2k2n for n(n+l).

Now

% 2
ak = 2
(h+a)2

so that equation (7.2) becomes

d2u

dh2

n 2 =2 2
= + et =
# [ e =, w2 ol 6

35
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Since usually,

k(h) = 1

and

k

the part in brackets in equation (7.4) becomes

k
o

2

B2 2kn2 = 2 )

|

to within terms of the order of h2/a2, and

_ rk(r)
N(r) ak
a
Letting
2 =
N“(h) = 1 + y(h)
y(h) = 2 x o2 M(h) - M_]
and
X o 2 _
k=R @A)

we obtain for equation (7.1)

2

d™u

dh

2

n

2
+ ko [y(h) + Xn] u 0.
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)

(7.8)

(7.9)

(7.10)

(7.11)
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The effect of this transformation has been to transform the
spherical earth problem into the so called '"flat earth" problem. The
resulting differential equation (7.12) turns out to be more easily
solvable. 1In the case when the index of refraction varies linearly
with height, the solutions of equation (7.12) take on particularly
simple forms. The price one pays is that the solutions will have an
error of approximately 2% for the frequencies and elevations of interest

here. This we will tolerate.

In terms of the function Qv in the general solution (5.10), equ.

(7.12) becomes

o)
-—dhz_' + kO [Y(h) + A\)] Q\)(h) =0 . (7.13)

The general solution of equ. (7.13) is

12

_ (&(h) (1) (2)
Q,(h) = Gy (A, Hys @) + B HYyy (50))) (7.14)
where
h
z (h) =/ ¢ (h) dh (7.15)
by
and
() =k [y(h) + 2] . (7.16)

Next, we will write the Hankel functions of order one-third, Hl/3(c)
in terms of the Furry modified Hankel functions h(z). Some of the
properties of these functions are given in Appendix E. Thus, the

transformation is

37



h @ =t w ) @mn
where
3 2/3
z = (5 z(h))
3/2
th) =%z
and equ. (7.14) becomes
1/6
Q) =58 (A b (2) +B h, (2)] .
v ¢1/2(h) 1 v 2

This form of the solution to equation (7.1) will be used in all sub-
sequent calculations. The remaining equations of Section 5 and Sec-
tion 6 are transformed in a straight forward if somewhat tedious way

In particular equation (6.35) now takes the form

by (2(h))

h. (z(h))
1 fi=0
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SECTION 8

MODEL FOR THE TROPOSPHERE

As we have seen previously, a smoothly varying index of refraction
with an elevated layer will, in general, result in the occurrence of
three transition points. Instead of an analytic function for the index
of refraction, we will choose three linear line segments which inter-
sect at the heights hl and hz, as in Figure 8.1. The heights hl and
h2 correspond to those of Ny and Ny in Section 6. These are the

height at which we "joined" the solutions in the three regions.

hl is the height of the layer and (h2 - hl) is its thickness.

Mathematically, the model can be described as,

v+ ah 8.2 s
yih) =1y, +a,dh ~ k) by <h 2 b, (8.1)
yo + ay(h - hy) h>h,

We have chosen the same slope (standard) for y(h) in region I and III.

The slope a, in region II is simply given by

yith,) = yihi)
a, = ﬁ_h I (8.2)
2 1

The model y(h) is illustrated in Figure 8.2.

For this choice of model the variables z in equ. (6.4) to (6.6)
and (6.14) to (6.17) take on the form
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Figure 8.1 LAYER MODEL
hA
REGION TIX
hz—
REGION IL
h. -
REGION I
>

Figure 8.2 THE FUNCTION Y(h).
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h 1/2
Ql(h) = koJ/n [y0 + alh - An] dh (8.3)
h

01
h 1/2
cz(h) = ko [yl +iai; (h - hl) + xn] dh (8.4)
by,
h 1/2
zy(h) = k ly, + a (h-hy) +2] dh, (8.5)
By
and
B 3/2
ey =3 G [y + 2, (8.6)
5 K 3/2
S () =5 QD [y + 4] (8.7)
5 By 3/2
Sa(h) =3 G [yp + 2] (8.8)
k
-2 (e 3/2
S0 =3 G by + 207 (8.9)

In terms of the variable z defined in equ. (7.18), we have for equ. (8.6)

to (8.9)
ko 2/3
2y, = c;I) (yy + 2) (8.10)
2/3
k
2y, = (39) (y; + 1) (8.11)
2
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2/3

k
2,0 = (f) @5 5 A (8.12)
2
ko 2/3
z32 = (;I) (y2 + An) " (8.13)

Since, for the model of Figure 8.2, a, is negative, we will choose the

principal root, that is

-i %1 k 28
Ty =6 E;;l Gy # 2D (8.14)
and
-1 &y 23
By = @ |;;| (s % ) - (8.15)

In terms of this model, the solution Qv(h)’ equ. (7.20), takes the

kO
A by <(¥)

k— 2/3 N
(o]
+ B h, <(——al) (v, + ah + Av)>}

following form in region I:

1/6 2/3

G Sl = o=t F F ah + Av)>

(8.16)

for 0 < h < h;

in region II:
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2/3

k
Q\)(h) = ( 2 2) C\)hl <(-;9) (y1 + az(h = hl) + Av)> +
3a2k 2
o
(8.17)
ko
Dth (;;) (yl + a2(h = hl) + Av)
for h1 i) ihi j_hz;
and in region III:
1/6 Kk 2/3
Q) = —*=) F h ((a—°) (v, + aj(h - hy) + W)
3a.k 1
1o
(8.18)
for h > h2 3

Expressions (8.16) to (8.18) are substituted in the transcendental

equation (7.21) and solved for the eigenvalues Av.
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SECTION 9
EXPRESSION FOR THE ELECTRIC FIELD

In terms of the function and variables defined in Section 7 and 8,

the expression for the potential U(r,0) in equation (4.13) takes the
form

Q. (h ) Q (h) P _(cos(m - 8))
U(h,e)=-M222v+l V' o v \Y

~ (9'1)
sin v6 d 9
4a v dh Qv(h) at Qv(h)
h=0 h=0
t=v
where v is related to Av by
e B AlCD = B5 25 (9.2)
o 2 v
and
3 =2 3
B C APl S 9.3
at k a 9x ( )
o v

and ho refers to the height of the transmitter.

The coefficients Av and Bv can be related to k using equ. (6.22)
and (6.23) and (6.32). Thus the expression for the height function
Qv(h)’ equ. (8.16) becomes in region I

1/6 2/3

k
o
Qv(h) = F\’K"Z (——2) [hZ <(—§) (y0 + alh + )\v)> -

K 2/3
o
k hl <(¥) (y0 + alh + )\v)>]
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for O<h<h

Similarly, the coefficients Cv and Dv can be written in terms of
FVKVZ' However, in the present investigation we will 1limit our-
selves to determining the fields above and below the layer. For

h z_hz, we have

2 1/6 ko 2/3
Q) = F (——5 b, (D (y, +ah-hy)+2)
3a_.k i
1 B8
(9.5)
for h>h,
Substituting equation (9.4) into (9.1) and carrying out the necessary

differentiations, we obtain the following expression for the potential

below the layer,

) oy \)+'2—
Ui= E :—1————— P (cos (m - 6)
4a2a4/3(k p)1/3 =/ sin vm v

(o]

(h, (0, (hy) = b, (0)h (hy)) (b (O)hy(B) = by (0Dhy (h))/

i 2
1= = k' h.” (0)
[ a(koap)2/3 il ]' (9.6)
for 0 f_h j_hl
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The notation hi(O), hZ(hO) and hi(h) refers to the value of the Hankel
function at the values of h = 0, h = h0 and h = h, respectively, in equ.

(9.4). In this derivation use was made of the Wronskian

1 _ 1 e
hy @) hy' (@) - h' @) h, (&) = ~oi ©.7)
where o = 1.457495. The coefficient p is related to ay by
-
a; = o (9.8)

p is equal to (2/3) for the standard (4/3) earth atmosphere. In equ. (9.6)
k' is the derivative of k with respect to the eigenvalue Ay

Since v is of the order of koa, we can make use of the asymptotic

expressions for the Legendre functions of large order.

In that case,

1 1/2
(v + E) Pv(cos (r -8)) 2koa

( 3n

1
) exp |1 e i (v + E) 6

1

sin vm m sin ©

(9:59)

In future discussions it will be of interest to compare the potential

U to its free space value. The value of U is

M e—ik(b)R
UO=H —R— . (9.10)

If we approximate the distance R by a® and make use of equ. (9.9) in equ.

(9.6), we obtain
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. .1 1/3 1/2 .
+ =, = = =
5 1/2 i3 ij 8 [ZW (koa) e] . i3 koa 8 Av-
9 173 }E:e
a’p

(h, ()b, () = h, (0 (h)))(h; @)h, (B) = h,(O)h (b))

i 2
T s R B (D
[ a(koap)z/s 1 ]

(9.11)

for 0 <h <h The eigenvalues Av are obtained from

1

[o]
h2 <Q§? k)
= k (9.12)

where k is given by equation (6.32).

The electric field E, is obtained from U by using the expression

¢

Loy U
E¢ = -lwn 535 (9.13)

in equ. (2.2). Since 6 appears only in the asymptotic expression (9.9),

we have

47



172

2k a 3
3 o 3 1
ael<n sin e) kg [14 e (G 9“

(9.14)
ZkOa 1/2 3T 1
&'m l:-ikoa] exp [14—‘1 (\) +E) eJ.
Using equ. (9.14), we obtain for the electric field E¢,
1/2
M 2/ 3y 2k 2 T LU
E = = 2 e 3 e . 3
) 4a2a1/3p1/3 m™ sin 8
i 1 k
Z Fka 8 )‘\) (9.15)
& .

\Y

(B, Ok, (hg) = hy(0)h (b)) (B (O)hy(h) = h,(0)h, (b))

i i 2
[l'ﬁ'i B g oo

a(koap)

for 0<h=<h

It should be noted that the ratio U/U0 does not differ appreciably from
the ratio of electric fields E¢/E¢prm' As long as the distance R at
which the field is measured is very much greater than a wavelength it

is sufficient to use the ratio U/UO.
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It will be of interest in later calculations to compare the
value of the potential U in a layered atmosphere with those values

when no layer is present. For an homogenous troposphere we then have

1 1/2
-i=68 1/3 3n
U _ e1/2 5 2 2m (koa) 6 ei =
Uo (sin 9)1/2 pl/3
(9.16)
TR (h,)h,, (h)
E 7 g T e )
s 2
4
v [h2 (0)]
where the Av are roots of the equation
K 248
h2 C;—) AV) =0 (9.17)
1
and
ko 2/3
hz(ho) = h2 (;I) (y0 + alho + AV) g (9.18)

As a check on these results, it is of interest to compare the

term in the denominator of equation (9.11), namely

L k'h

1- A i

() (9.19)
a(koap)

with the result of Furry [16] for completely trapped modes. Here we

have written hl(Av) instead of hl(O) to emphasize the fact that XV is
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complex. This factor is proportional to the normalization constant
for the eigenfunctions, i.e., the solutions of equation (7.13). For

this factor Furry gets, in terms of our notation

o2 ’
’ 1 k L3 i
G = =
" (y(h) +a)) dh <2 2) 5 (9.20)
P Ihl(a )|
h \Y
01
where the eigenvalues Av are written as
Xv i + ti . (9.21)
Carrying out the integration, we get
1/3fa, - a
2 1
k -1/3 2 2ko < a.a >
C =2 _.< o o 1 - 1.2
22 2
v e lhl(av)l a(p2a2)1/3
(9.22)
1./2 2
(y; + o) "/h ()

We will concentrate on the factor in large parenthesis. For completely

trapped modes we obtain

4h a, - a, 3/2
-1 2 ol LURES (9.23)

Kk =!e1"/3 5
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so that expression (9.19) becomes

= 1/2
17% 00~ S
2ha < >[yl i >‘\)] + i

i i ,
2/3 ©

w|a

1 -

a(ap)
(9.24)

But at the eigenvalue for completely trapped modes (see Section 10.2)

2k a, - a
9 < : 1> G # h 0L o = BT e BBy (9,255
ala2 1 v

Then expression (9.24) becomes

/3 Ja, == e
z 1
2K <——> (y; + 2

a.a .T/6
1+ L2 773 <;1 hl(Av)z . (9.26)
a(ap)

For the completely trapped modes A\)E a s to a high approximation.

Furthermore, Furry introduces the correction factor § so that

WO
e hl(av) = pure imaginary . (9.27)

Using this fact in equation (9.26) we obtain,
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alaz

1/3 [a, - a 1/2
2 1
2k0 < > (yl * av) 2
73 |hl(av)| (9.28)

1 —
cz(atp)2

which agrees with equation (9.22) for the term in brackets.
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SECTION 10

NUMERICAL RESULTS

10.1 Description of the Computer Calculations

The computations were done in three major steps. First, the
Hankel functions were calculated; second, the roots of the transcen-
dental equation (7.21) were found and finally the Hertz potential
function, essentially a sum of the roots, was obtained. In the ex-
pressions for the roots of the transcendental equation and the Hertz
potential or electric field, Hankel functions of the first and second
kind of order one-third and complex argument z, i.e., Hf};(z)(z), and
their derivatives, appear. The variable z takes on the whole range of
complex values, from very small to very large. To evaluate these func-
tions, we made use of the Furry [16] infinite series and asymptotic
series expressions for the modified Hankel functions of order one-
third, h(l)(2) [see Appendix D and Section 10.2]. As our condition
on the accuracy of the calculations, we required agreement with the
tabulated results. This meant that the modified Hankel functions had
to be calculated at least in double-precision (fourteen place accuracy)
on the IBM 370-155*. (This was also the limitation of the present
software available.) It turned out that the agreement of the calcul-
ated results with the tables was good to seven (out of eight) signifi-
cant figures after the decimal point. This was satisfactory. The
series expression for the Hankel functions were used for Izl < 6 and
the asymptotic expressions for |z| > 6. The series in the asymptotic
expressions was carried to powers in z of z_21/2. The agreement between

the two series at z = 6 is one-to-one. In the case of the asymptotic

series one must be very careful so as to use the proper expressions in

*

As an historical note, it is interesting to reflect that the tabulated
results were obtained by the Harvard Computation Laboratory (now Aiken
Computational Center) in 1944,
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the various domains of the complex plane. In particular, if the
magnitude of z is large, and z is very near the negative real axis,
it is more convenient to use the Miller asymptotic formulas valid for

%I-< arg <-%1 [16] .

The next major task was the calculation of the roots of the
transcendental equation (7.21). This turned out to be the most diffi-
cult and time consuming operation of the whole program. The problem
was complicated not only by the fact that the roots were in the complex
plane but also by the fact that roots of large real part and extremely
small imaginary part (trapped modes) had to be obtained. The expression

for the transcendental equation (7.21) can be written either as

F = hz(Av) = k(hl,hz,kv) hl (Av) =0 (10.1)
or as
hz(Av)
F = W = k(hl,hz,Av) =0 (10.2)

To obtain the roots corresponding to the trapped modes it is essential
to use the second form for F, since both h2 and hl are very large
simultaneously. The secant and the Newton-Raphson iteration methods
[17] were used to solve F = 0 for Av. The experience of previous
investigators attempting to solve similar problems had been that the
two methods give, in general, good convergence in the complex plane.
Each method, however, was cited to give no convergence for particular
geometries of F in the complex plane. The recommendation in those
instances has been to go simply to another method. It would be pre-
sumptuous to make a general conclusion on which of the two methods
gives more rapid convergence, for this depends on the particular pro-
blems involved; speaking only for our problem it was found that the

Newton-Rhapson method gives somewhat better rate of convergence. The
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roots found, however, by each method are identical for the same error
bound on Av’ 1€, lxé“) - Ain_l)l < €. The disadvantage of both
methods i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>